
1

This question is about Group 1 elements.

A teacher demonstrated the reaction of Group 1 elements with water.

Figure 1 shows the apparatus.

Figure 1

(a) What name is given to Group 1 elements?

Tick **one** box.

Alkali metals	
Halogens	
Noble gases	
Non-metals	

ľ	1
•	٠,

(b) The teacher wore safety glasses and used tongs to handle the elements.

Suggest $\ensuremath{\text{one}}$ other safety precaution the teacher should take.

Table 1

Element	Observations		
Lithium	bubbles formlithium moves slowly on surface		
Sodium	bubbles formsodium moves quickly on surfacesodium melts to form a ball		
Potassium	 bubbles form potassium moves very quickly on surface potassium melts to form a ball a lilac flame is seen 		

ubidiu	um is a Group 1 element.
ubidi	um is below potassium in the periodic table.
ugge	st why the teacher did not demonstrate the reaction between rubidium and water.

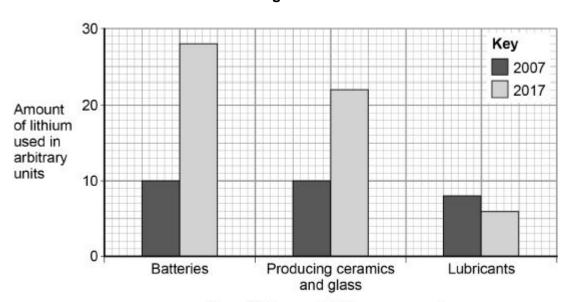
(f)	What is the r	name of the compound with the	formula NaOH?	
	Tick one box	ζ.		
	Sodium dio	xide		
	Sodium hyd	Irate		
	Sodium hyd	Iroxide		
	Sodium oxid	de		
Table	e 2 shows the	diameter of atoms of Group 1	elements.	(1)
		Element	Diameter of atom in nanometres	
		Lithium	0.304	
		Sodium	0.372	
		Potassium	Х	
		Rubidium	0.496	
		Caesium	0.530	
(g)	Predict value	e X in Table 2.		_
		X	=r	nanometres
				(1)

(h) 1 nanometre is 10^{-9} metres.

What is the diameter of a lithium atom in metres?

Tick **one** box.

$$3.04 \times 10^{-8} \text{ m}$$


$$3.04 \times 10^{-9} \text{ m}$$

$$3.04 \times 10^{-10} \text{ m}$$

$$3.04 \times 10^{-11} \text{ m}$$

Figure 2 shows the use of lithium and lithium compounds in 2007 and 2017.

Figure 2

Use of lithium and lithium compounds

You must include data from Figure 2 in your answer.	2017.
	tal 13 mar
The diagram shows an atom of magnesium and an atom of chlorine.	

Magnesium Chlorine	
Describe, in terms of electrons, how magnesium atoms and chlorine atoms change in ions to produce magnesium chloride (MgCl ₂).	nto

	(b)	Calculate the relative for	ormula mass $(M_{\rm r})$ of magnesium chloride (MgCl ₂).	
		Relative atomic masses	s (A_r) : magnesium = 24; chlorine = 35.5	
				<u> </u>
			Relative formula mass $(M_r) = $	
				(2) (Total 6 marks)
3	(a)	Methane is burned in a	plentiful supply of oxygen.	
		Which is the correct bal	lanced chemical equation?	
		Tick one box.		
		$CH_4 + O_2 \rightarrow CO_2 + H_2$	0	
		$CH_4 + 2O_2 \rightarrow CO_2 + H$	₂ O	
		$CH_4 + 2O_2 \rightarrow CO_2 + 2O_2 + 2O_3 + $	H ₂ O	
		$CH_4 + 3O_2 \rightarrow 2CO_2 + 3$	2H ₂ O	
				(1)
	(b)	Burning fuels causes at	mospheric pollution.	
		Write one effect for each	h pollutant in Table 1 .	
			Table 1	
		Pollutant	Effect	
		Carbon monoxide		
		Sulfur dioxide		
		Particulates		

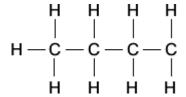
(3)

(c) Methane, petrol and coal are fuels.

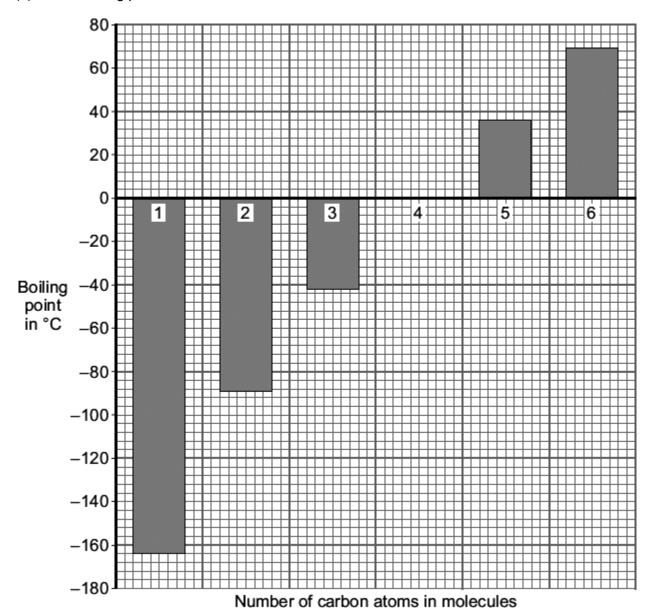
Evaluate the use of the fuels.

Table 2 shows information about these fuels.

Table 2


Fuel	State	Energy content in kJ per g	Mass in mg of CO ₂ produced for one kJ of energy released
Methane	Gas	52	53
Petrol	Liquid	43	71
Coal	Solid	24	93

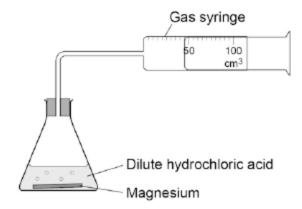
lse in the information in Table 2 and your knowledge.	
	_


(6) (Total 10 marks) Crude oil is a mixture of hydrocarbons. Most of these hydrocarbons are alkanes.

(a) The general formula of an alkane is C_nH_{2n+2}

Complete the structural formula for the alkane that has **six** carbon atoms in its molecules.

(b) The boiling points of alkanes are linked to the number of carbon atoms in their molecules.

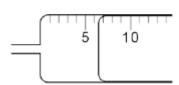

(i) Describe the link between the number of carbon atoms in an alkane molecule and its boiling point.

	alkane with the formula C ₃₀ H ₆₂
	1
	2
dioxi	ng the last 200 million years the carbon cycle has maintained the percentage of carbon de in the atmosphere at about 0.03 %.
	the last 100 years the percentage of carbon dioxide in the atmosphere has increased out 0.04 %.
	of this increase is caused by burning fossil fuels to heat buildings, to generate
	ricity and to power our transport. il fuels contain carbon that has been locked up for millions of years.
(i)	Burning fossil fuels, such as petrol, releases this locked up carbon. Balance the chemical equation for the combustion of one of the alkanes in petrol.
	2 C ₈ H ₁₈ + 25 O ₂ CO ₂ + H ₂ O
(ii)	Where did the carbon that is locked up in fossil fuels come from?
/:::\	
(iii)	The burning of fossil fuels has caused the percentage of carbon dioxide in the atmosphere to increase to above 0.03 %. Explain why.

(Total 8 marks)

A student investigated the rate of the reaction between magnesium and dilute hydrochloric acid. The student used the apparatus shown in **Figure 1** to collect the gas produced.

Figure 1

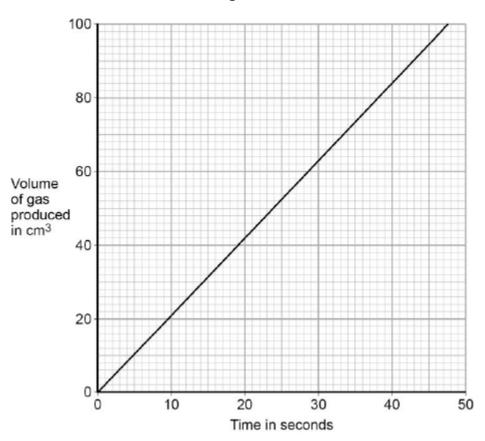

- (a) Outline a plan to investigate how the rate of this reaction changed when the concentration of the hydrochloric acid was changed.
 - Describe how you would do the investigation and the measurements you would make.
 - Describe how you would make it a fair test.

You do not need to write about safety precautions.			

(6)

(b) Figure 2 shows the gas syringe during one of the experiments.

Figure 2


What is the volume of gas collected?

Tick **one** box.

5.3 cm ³	
---------------------	--

(c) Figure 3 shows the student's results for one concentration of hydrochloric acid.

Figure 3

The table below shows the student's results when the concentration was two times greater than the results on **Figure 3**

Time in seconds	Volume of gas produced in cm ³
0	0
10	35
15	52
20	80
30	87

Plot the results in the table above on the grid in **Figure 3**. Draw a line of best fit.

(3)

(d)	Give one conclusion about how the rate of reaction changed when the concentration of hydrochloric acid was changed.
	(Total 11
The	equation for a reaction to produce hydrogen is:
	$CO(g)$ + $H_2O(g)$ \rightleftharpoons $CO_2(g)$ + $H_2(g)$
(a)	Explain why changing the pressure does not affect the yield of hydrogen at equilibrium.
	·
(b)	Suggest why the best yield of hydrogen at equilibrium is obtained at low temperatures.
(c)	The temperature used in industry needs to be high enough for the reaction to take place quickly. Explain, in terms of particles, why the rate of reaction increases when the temperature is increased.

	temperatures. How could this be good for the manufacturer and for the environmen	
		— (Total 7 r
(a)	The formula for the chemical compound magnesium sulphate is MgSO ₄ .	`
	Calculate the relative formula mass (M _r)of this compound. (Show your working.)	
(b)	Magnesium sulphate can be made from magnesium and dilute sulphuric acid.	
	This is the equation for the reaction.	
	$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$	
	Calculate the mass of magnesium sulphate that would be obtained from 4g of mag (Show your working.)	gnesium.
		_
	Answer	

0
0

(a)

A company manufactures ethanol (C_2H_5OH).

The reaction for the process is:

$$C_2H_4(g) + H_2O(g)$$
 \longrightarrow $C_2H_5OH(g)$ $\Delta H = -45 \text{ kJ per mole}$

The temperature and pressure can be changed to increase the yield of ethanol at equilibrium.

Explain what is meant by equilibrium.						

1.5
١-

(b)	(i)	How would increasing the temperature change the yield of ethanol at equilibrium?
		Give a reason for your answer.

(2)

(ii)	How would increasing the pressure change the yield of ethanol at equilibrium?
	Give a reason for your answer.

(2)

	(c)	A catalyst is added to increase the rate of the reaction.	
		Explain how adding a catalyst increases the rate of a chemical reaction.	
			(2) tal 9 marks)
	This	s question is about iron.	tai o marko,
9		reacts with dilute hydrochloric acid to produce iron chloride solution and one other prod	uct.
	(a)	Name the other product.	
			(1)
	(b)	Suggest how any unreacted iron can be separated from the mixture.	
			(1)

$$3 \text{ Mg} + 2 \text{ FeCl}_3 \longrightarrow 2 \text{ Fe} + 3 \text{ MgCl}_2$$

(c)	0.120 g of magnesium reacts with excess iron chloride solution.			
	Relative atomic masses (A_r): Mg = 24 Fe = 56			
	Calculate the mass of iron produced, in mg			
	Mass of iron =	mg		

(5)

Explain which species is reduced in the reaction between magnesium and iron chior	ide.
$3 \text{ Mg} + 2 \text{ FeCl}_3 \longrightarrow 2 \text{ Fe} + 3 \text{ MgCl}_2$	
Your answer should include the half equation for the reduction.	
	_
	_
	-
	-
	-
	-
	-
	-
(То	(3) otal 10 marks)

Mark schemes

_	
1	

(a) alkali metals

1

- (b) any **one** from:
 - small piece of metal
 - large volume of water
 - use a (safety) screen
 - keep a safe distance (between teacher / students and apparatus)

1

1

(c) reactivity increases down the group

any **two** from:

- speed increases (down the group)
- sodium / potassium melts but lithium does not
- flame is seen with potassium, but no flame with lithium / sodium

2

(d) rubidium is too reactive

allow reaction would be violent

1

(e) $2Na + 2H_2O \rightarrow 2NaOH + H_2$

allow correct multiples

1

(f) sodium hydroxide

1

(g) an answer in the range 0.373-0.495 (nanometres)

1

(h) 3.04×10^{-10} m

	(i)	batteries increased from 10 to 28 or		
		batteries increased by 18		
		allow batteries increased approximately ×3	1	
		producing ceramics and / or glass increased from 10 to 22 or		
		producing ceramics and / or glass increased by 12		
		allow ceramics and / or glass increased by approximately x2		
			1	
		lubricants decreased from 8 to 6		
		or lubricants decreased by 2		
		allow lubricants decreased by a quarter		
		and the same and a decreased by a quarter	1	
		if no other marks awarded allow 1 mark for batteries		
		and glass / ceramics increased, lubricants decreased, with no or incorrect data		
		with no or incorrect data		[13]
				[၊၁]
2	(a)	magnesium loses electrons		
		there are four ideas here that need to be linked in two pairs.		
			1	
		two electrons		
			1	
		chlorine gains electrons		
		magnesium loses electrons and chlorine gains electrons scores 2		
		marks.		
			1	
		two atoms of chlorine		
		magnesium <u>loses</u> <u>two</u> electrons and <u>two chlorines</u> each <u>gain</u> one		
		electron will score full marks.	1	
			•	
	(b)	95		
		correct answer with or without working gains 2 marks		
		if answer incorrect, allow 24 + 35.5 + 35.5 for 1 mark	2	
			-	[6]
	(0)			- -
3	(a)	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	1	
			_	

/i \		
(b)	\ +A	XIC
	, ,,,	XII.

accept causes death

acid rain

or

respiratory problems

accept respiratory problems / asthma

global dimming

(c)

Level 3: A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.	5-6
Level 2: Some logically linked reasons are given. There may also be a simple judgement.	3-4
Level 1: Relevant points are made. They are not logically linked.	1-2
No relevant content	0
Indicative content	
methane is the best fuel because it gives more energy per gram than coal, and gives less carbon dioxide per kJ of energy produced	
petrol is best because it being a liquid is easier to handle than gas or coal - although the energy content is lower than the others, it gives out less carbon dioxide than coal	
methane has more energy per gram than coal	
coal produces most carbon dioxide	
coal can produce sulfur dioxide	

[10]

1

1

1

4

(b)

(a) complete diagram with 2 carbon atoms and 5 hydrogen atoms each C–C and each C–H linked by a single line (bond)

(i) the greater the number of (carbon) atoms (in an alkane molecule) the greater its boiling point **or** vice versa

allow as the (carbon) chain gets longer the boiling point increases ignore melting points

do not accept reference to greater number of molecules

1

	(ii)	they = hydrocarbons from the graph $it = C_{30}H_{62}$		
		any two from:		
		low boiling point / volatile		
		accept they are gases or liquids		
		low viscosity		
		high flammability		
		accept easier to burn / ignite		
		small molecules		
		accept short chains		
		ignore number of carbon atoms		
		burn completely		
		ignore speed of burning	2	
			2	
(c)	(i)	16 (CO ₂) + 18 (H ₂ O)	1	
			1	
	(ii)	(carbon dioxide in the Earth's early) atmosphere		
		accept from volcanoes (millions of years ago)		
		or from <u>dead</u> plants / animals		
		allow dead sea creatures		
		ignore shells		
			1	
	(iii)	increase in burning / use of fossil fuels		
			1	
		locked up carbon (carbon dioxide) is released		
		allow carbon / carbon dioxide from millions of years ago is released		
		accept extra carbon dioxide is not 'absorbed' (by the carbon cycle)		
			1	
				[8]

(a) Level 3 (5-6 marks):

A coherent method is described with relevant detail, which demonstrates a broad understanding of the relevant scientific techniques and procedures. The steps in the method are logically ordered with the dependent and control variables correctly identified. The method would lead to the production of valid results.

Level 2 (3–4 marks):

The bulk of a method is described with mostly relevant detail, which demonstrates a reasonable understanding of the relevant scientific techniques and procedures. The method may not be in a completely logical sequence and may be missing some detail.

Level 1 (1-2 marks):

Simple statements are made which demonstrate some understanding of some of the relevant scientific techniques and procedures. The response may lack a logical structure and would not lead to the production of valid results.

0 marks:

No relevant content

Indicative content

- remove bung and add magnesium
- start stopclock / timer
- measure volume of gas at fixed time intervals
- repeat with different concentrations of acid
- control volume of acid
- control initial temperature of acid
- control amount / mass / length / particle size of magnesium
- (b) 6.5 cm^3

6

(c) all points plotted correctly

allow 1 mark for 4 points plotted correctly

best fit straight line drawn

(d) when the concentration of acid increased the rate of reaction increased or vice versa answer must use the terms 'rate of reaction' linked to 'concentration'

(a) same number of (gaseous) molecules / moles / volume on both sides of the equation

allow particles for molecules do **not** accept atoms ignore amount [11]

6

1

2

1

1

(b) (forward) reaction is exothermic accept reverse answer

1

3

- (c) any **three** from:
 - particles gain energy
 - particles move faster
 allow particles collide faster / quicker
 ignore move more / vibrate more
 - particles collide more or more collisions
 - more of the collisions are successful or more of the particles have the activation energy or particles collide with more force / energy

(d) any **two** from:

- more product (obtained in shorter time)
 accept better yield (of product)
- less fuel needed
 accept less energy / heat / electricity needed

or

lower fuel costs ignore cheaper unqualified

less pollution caused by burning fuels

or

less specified type of pollution caused by producing heat / burning fuels allow correct specified pollutants caused by burning fossil fuels eg CO₂ / greenhouse gases **or** correct effect of burning fossil fuels eg global warming accept thermal / heat pollution

using less fuel conserves resources
 accept sustainable
 accept fossil fuels are non-renewable

2

[7]

7	(a)	Mg S O ₄ 24 + 32 + 16 (×4) or 64 / evidence of <u>all</u> A's gains 1 mark	
		but $(M_r) = 120$ $gains 2 marks$ 2	
	(b)	evidence that 24(g) magnesium would produce 120(g) mapesiurn sulphate gains 1 mark	
		or correct scaling by 1/6	
		but 20(g) magnesium sulphate gains 2 marks [credit error carried forward from (a) with full marks in (b)]	
			[4]
8	(a)	the forward and backward reactions occur allow reversible	1
		at (exactly) the same rate	1
		in a closed system allow therefore the concentrations / amounts of the reactants and products <u>remain</u> the same	1
	(b)	(i) increasing the temperature would <u>lower</u> the yield of ethanol or the (position of) equilibrium moves to the left	
		if student has stated that increasing the temperature increases the yield then award 0 marks	
		since the backwards reaction is endothermic or the forward reaction is exothermic	1
		(ii) increasing the pressure would <u>increase</u> the yield of ethanol or the (position of) equilibrium moves to the right	
		if student has stated that increasing the pressure decreases the yield then award 0 marks	1
		because the position (of equilibrium) moves in the direction of the lower number of moles (of gas) 2 (moles / molecules / volumes / particles) on lhs / 1 (mole / molecule / volume / particle) on rhs	1

(c) (a catalyst) provides an alternative pathway 1 with lower activation energy or (a catalyst) lowers the activation energy (1) so less energy is needed to react **or** more particles react (1) 1 [9] hydrogen **or** H₂ (a) 9 allow hydrogen gas ignore H without the 2 subscript 1 filtration / filter (b) allow magnet or decant ignore heating 1 (c) (Mg) $\frac{0.12}{24}$ or 0.005 (moles) mark is for ÷ by 24 1 (Fe) $\frac{2}{3} \times 0.005 = 0.00333 \times 56$ mark is for $\times \frac{2}{3}$ 1 $(mass Fe) = 0.00333 \times 56$ mark is for x 56 1 = 0.1866 (g)1 = 187 (mg)1 an answer of 280 (mg) scores 4 marks an answer of 0.280 scores 3 marks (no ratio from equation) 184 scores $0 = (3 \times 24) + (2 \times 56)$

OR

(Mg) =
$$\frac{0.12}{(3 \times 24 =)72}$$
 (1)
= 0.00166 **or** $\frac{1}{600}$ (moles) (1)

(mass of Fe) = 0.00166

or
$$\frac{1}{600} \times 112(2 \times 56)$$
 (1)

$$= 0.1866 (g) (1)$$

OR

72 g Mg
$$\rightarrow$$
 112g Fe (1)

1 g Mg
$$\rightarrow \frac{112}{72}$$
 or 1.56 g Fe (1)
0.12 g Mg $\rightarrow \frac{112}{72} \times 0.12$ (1)

$$= 0.1866 (g) (1)$$

$$= 187 (mg) (1)$$

an answer of 185–190 (mg) scores **5** marks an answer of 0.185–0.19 scores **4** marks

(d)
$$Fe^{3+}$$

(because) reduction is gain of electrons

allow change in oxidation state / (+)3 to 0

$$Fe^{3+} + 3e^{(-)} \longrightarrow Fe$$

[10]

1

1