Summer practise questions

Year 11 into year 12

Name:
Class:

Date:

Time:

Marks:
111 marks

Comments:

The diagram shows the stages of an extreme sport called 'human catapult'.

- A person lies in a cradle which is held to the ground.
- The cradle is released.
- The person is launched vertically into the air by an elastic rope.
- The person then parachutes back to the ground.

(a) In position \mathbf{A} there is a store of elastic energy.

Position \mathbf{C} is the person's maximum height.
Describe the energy transfers from position \mathbf{A}, through position \mathbf{B}, to position \mathbf{C}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) In the last few metres of his descent during the parachute stage, the person travels at a terminal velocity.

Explain why.
\qquad
\qquad
\qquad
\qquad
(c) When stretched in position \mathbf{A}, the elastic rope stores 25000 joules.

The elastic rope behaves like a spring, with a spring constant of $125 \mathrm{~N} / \mathrm{m}$
Calculate the extension of the elastic rope.
Use the Physics Equations Sheet.
\qquad
Extension of elastic rope $=$ \qquad m
(d) The vertical velocity of the person at position \mathbf{B} in the diagram is $26 \mathrm{~m} / \mathrm{s}$

The vertical velocity at position \mathbf{C} is $0 \mathrm{~m} / \mathrm{s}$
Calculate the distance between position \mathbf{B} and position \mathbf{C}. Ignore the effect of air resistance.

Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Distance $=$ \qquad m

2 The current in a circuit depends on the potential difference provided by the cells and the total resistance of the circuit.
(a) Figure 1 shows the graph of current against potential difference for a component.

Figure 1

What is the name of the component?
Draw a ring around the correct answer.

$$
\text { diode } \quad \text { filament bulb } \quad \text { thermistor }
$$

(b) Figure 2 shows a circuit containing a 6 V battery.

Two resistors, \mathbf{X} and \mathbf{Y}, are connected in parallel.
The current in some parts of the circuit is shown.
Figure 2

(i) What is the potential difference across \mathbf{X} ?

Potential difference across $\mathbf{X}=$ \qquad V
(ii) Calculate the resistance of \mathbf{X}.
\qquad
\qquad
Resistance of $\mathbf{X}=$ \qquad Ω
(iii) What is the current in \mathbf{Y} ?

Current in $\mathbf{Y}=$ \qquad A
(iv) Calculate the resistance of \mathbf{Y}.
\qquad
Resistance of $\mathbf{Y}=$ \qquad Ω
(v) When the temperature of resistor \mathbf{X} increases, its resistance increases.

What would happen to the:

- potential difference across \mathbf{X}
- current in \mathbf{X}
- total current in the circuit?

Tick (\checkmark) three boxes.

	Decrease	Stay the same	Increase
Potential difference across \mathbf{X}			
Current in \mathbf{X}			
Total current in the circuit			

3 A light dependent resistor (LDR) is connected in a circuit.
(a) Draw the circuit symbol for an LDR.
(b) A student investigated the relationship between current and potential difference for an LDR.

How should the student have connected the ammeter and voltmeter in the circuit? Tick one box.

Ammeter

in parallel with LDR
in parallel with LDR
in series with LDR
in series with LDR

Voltmeter
in parallel with LDR
in series with LDR
in parallel with LDR
in series with LDR
\square
\square
\square
\square

The diagram below shows a sketch graph of the student's results.
The LDR was in a constant bright light.

(c) The student concluded that the current in the LDR is inversely proportional to the potential difference across the LDR.

Explain why the student's conclusion is incorrect.
\qquad
\qquad
\qquad
\qquad
(d) The student repeated the investigation with the LDR in constant dark conditions.

Sketch on the diagram above the graph for the LDR in constant dark conditions.

The LDR was placed near a light source.
The following results were recorded:
potential difference $=5.50 \mathrm{~V}$
current $=12.5 \mathrm{~mA}$
(e) Write down the equation that links current, potential difference and resistance.
\qquad
(f) Calculate the resistance of the LDR.
\qquad
\qquad
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω

Figure 1 shows a circuit diagram containing two identical lamps arranged in parallel.
The reading on the ammeter is 186 mA .
Figure 1

(a) Which statement about the current through the lamps is true?

Tick one box.

The current through both lamp \mathbf{P} and lamp \mathbf{Q} is $\mathbf{0 . 0 9 3} \mathbf{A}$ \square

The current through both lamp \mathbf{P} and lamp \mathbf{Q} is $\mathbf{0 . 1 8 6 ~ A}$ \square

The current through both lamp \mathbf{P} and lamp \mathbf{Q} is $\mathbf{0 . 9 3} \mathbf{A}$ \square

The current through both lamp \mathbf{P} and $\operatorname{lamp} \mathbf{Q}$ is $1.86 \mathbf{A}$ \square
(b) One of the lamps breaks and is not replaced.

Which statement about the current in the other lamp is true?
Tick one box.

The current through the lamp is 0.093 A \square

The current through the lamp is 0.186 A \square

The current through the lamp is 0.93 A \square

The current through the lamp is 1.86 A \square
(c) Figure 2 shows a circuit that can be used to alter the brightness of a lamp.

Figure 2

The resistance of the variable resistor is increased.
What effect will this have on the brightness of the lamp?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
(d) When the potential difference across the lamp is 3.3 V , the current is 0.15 A .

Write down the equation that links current, potential difference and resistance.
Equation \qquad
(e) Calculate the resistance of the lamp.
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω
(f) Sketch a current-potential difference graph for a filament lamp.

5 Speed and velocity are different quantities.
(a) Complete the sentences.

Velocity is a \qquad quantity.

The velocity of an object is its speed in a given \qquad .

The graph shows a distance-time graph for an athlete in a race.

(b) Determine the distance of the race and the time taken for the athlete to complete the race. Use the graph.
\qquad
\qquad
Distance $=$ \qquad
Time $=$ \qquad
(c) Describe how you can use the graph to determine the velocity of the athlete 20 minutes after the start of the race.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A car following the race accelerates at a constant rate in a straight line.
The velocity of the car increases from $4.9 \mathrm{~m} / \mathrm{s}$ to $6.4 \mathrm{~m} / \mathrm{s}$ in 3.00 minutes.
(d) Calculate the acceleration of the car.

Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Acceleration }=\ldots \mathrm{m} / \mathrm{s}^{2}
$$

(e) Sketch a velocity-time graph to represent the acceleration of the car in part (d).

(f) At the end of the race the car is travelling at $5.2 \mathrm{~m} / \mathrm{s}$

The brakes are applied causing the car to slow down and stop.
The brakes apply a constant force of 855 N in the opposite direction to the car's motion.
The mass of the car is 950 kg
Calculate the braking distance travelled by the car.
\qquad
Braking distance = \qquad m

6 When two objects interact, they exert forces on each other.
(a) Which statement about the forces is correct?

Tick (\checkmark) one box.

	Tick (\checkmark)
The forces are equal in size and act in the same direction.	
The forces are unequal in size and act in the same direction.	
The forces are equal in size and act in opposite directions.	
The forces are unequal in size and act in opposite directions.	

(b) A fisherman pulls a boat towards land.

The forces acting on the boat are shown in Diagram 1.
The fisherman exerts a force of 300 N on the boat.
The sea exerts a resistive force of 250 N on the boat.

(i) Describe the motion of the boat.
\qquad
\qquad
\qquad
\qquad
(ii) When the boat reaches land, the resistive force increases to 300 N .

The fisherman continues to exert a force of 300 N .
Describe the motion of the boat.
Tick (\checkmark) one box.
Accelerating to the right $\quad \square$
Constant velocity to the right \square

Stationary

(iii) Explain your answer to part (b)(ii).
\qquad
\qquad
\qquad
\qquad
(iv) Another fisherman comes to help pull the boat. Each fisherman pulls with a force of 300 N, as shown in Diagram 2.

Diagram 2 is drawn to scale.
Add to Diagram 2 to show the single force that has the same effect as the two 300 N forces.

Determine the value of this resultant force.

Diagram 2

Resultant force $=$ \qquad N

7 A swimmer dives off a boat.
Look at Figure 1.
Figure 1
(a) What two factors determine the momentum of the swimmer?

1. \qquad
2. \qquad
(b) What is the unit of momentum?

Tick one box.

$$
\mathrm{J} / \mathrm{s}
$$

$\mathrm{kg} \mathrm{m} / \mathrm{s}$

N m \square
$\mathrm{m} / \mathrm{s}^{2}$

(c) The boat was stationary.

As the swimmer dives forwards, the boat moves backwards.
Use the idea of conservation of momentum to explain why the boat moves backwards.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Explain what would happen to the motion of the boat if there were more people on the boat when the swimmer dived off.
\qquad
\qquad
\qquad
\qquad
(e)

The swimmer's speed increases as she swims away from the boat.
The swimmer has a top speed.
Explain why.
\qquad
(Total 14 marks)
8 Alpha particles, beta particles and gamma rays are types of nuclear radiation.
(a) Describe the structure of an alpha particle.
\qquad
\qquad
(b) Nuclear radiation can change atoms into ions by the process of ionisation.
(i) Which type of nuclear radiation is the least ionising?

Tick (\checkmark) one box.
alpha particles

beta particles

gamma rays

(ii) What happens to the structure of an atom when the atom is ionised?
\qquad
\qquad
(c) People working with sources of nuclear radiation risk damaging their health.

State one precaution these people should take to reduce the risk to their health.
\qquad
\qquad

9 A student changed the force applied to a spring by adding weights.
The figure below shows a graph of her results.

(a) Write down the equation that links the force applied and extension for a spring.
\qquad
(b) Identify the pattern shown in the figure above.

Explain your answer.
\qquad
\qquad
\qquad
\qquad
(c) Give one way the student could improve her investigation.
\qquad
(d) Describe the relationship between work done and elastic potential energy in stretching a spring.
\qquad
\qquad
\qquad
\qquad
(e) Draw a line on the figure above to show the results for a stiffer spring.

Explain the reason for the line you have drawn.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) Explain what would happen to the spring if the student kept adding weights?
\qquad
\qquad
\qquad
\qquad

10 This question is about forces, quantities and vectors.
(a) Write down the equation that links gravitational field strength, mass and weight.
\qquad
(b) A small ball weighs 1.4 N .
gravitational field strength, $g=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the mass of the ball.
\qquad
\qquad
\qquad
\qquad kg
(c) A white ball with mass 143 g is moving at a velocity of $7.9 \mathrm{~m} / \mathrm{s}$.

It collides with a red ball with mass of 150 g .
The red ball is stationary before the collision. The white ball stops after the collision.
Calculate the velocity of the red ball after the collision.
Give your answer to two significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Velocity of red ball = \qquad m / s
(d) The white ball is thrown high into the air.

After it is released the ball moves up and then back down in a vertical line.
The free body force diagram in the figure below shows the forces on the ball at one point in its flight.

The force arrows are drawn to scale.

Explain what is happening to the ball at this point in its flight.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

(a) between \mathbf{A} and \mathbf{B} (the elastic store decreases and) the kinetic and gravitational stores increase
between \mathbf{B} and \mathbf{C} the kinetic store decreases and the gravitational store increases
the internal energy store of the surroundings increases
allow either
some energy is dissipated to the surroundings
or
some energy is dissipated as heat / sound
(b) the weight and air resistance are equal and opposite
so the resultant force is zero
(c) $25000=1 / 2 \times 125 \times \mathrm{e}^{2}$
$\mathrm{e}^{2}=\frac{2 \times 25000}{125}$
$e=\sqrt{\frac{2 \times 25000}{125}}$
$\mathrm{e}=20(\mathrm{~m})$
an answer of $20(\mathrm{~m})$ scores 4 marks
(d) acceleration $=(-) 9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
$0^{2}-26^{2}=2 \times(-9.8) \times s$
$\mathrm{s}=\frac{-26^{2}}{2 \times(-9.8)}$
$\mathrm{s}=34(\mathrm{~m})$

2 (a) filament bulb
(ii) 3Ω or their $\frac{\text { (i) }}{2}$ correctly calculated allow 1 mark for correct substitution ie $6=2 \times R$ or their (i) $=2 \times R$
(iii) 1 A
(v)

Decrease	Stay the same	Increase
	\checkmark	
\checkmark		
\checkmark		

3 (a)

(b) in series with in parallel LDR with LDR
(c) (graph shows) direct proportion
(because) it is a straight line through the origin allow inverse proportion would show a curve with a negative gradient
(d) straight line through the origin with a positive gradient
current is always of smaller magnitude than line already plotted for a given potential difference
this mark only scores if first mark is awarded
allow for 2 marks a straight horizontal line along the x-axis
(e) potential difference $=$ current \times resistance

$$
\text { allow } V=I R
$$

(f) $12.5 \mathrm{~mA}=0.0125 \mathrm{~A}$
$5.50=0.0125 \times R$
this mark may be awarded if current is incorrectly / not converted
($\mathrm{R}=) \frac{5.50}{0.0125}$
this mark may be awarded if current is incorrectly / not converted
$(\mathrm{R}=) 440(\Omega)$
allow an answer consistent with incorrectly / not converted current
an answer of $440(\Omega)$ scores 4 marks
an answer of $0.44(\Omega)$ scores 3 marks
$4 \quad$ (a) $\quad 0.093 \mathrm{~A}$
(b) $\quad 0.093 \mathrm{~A}$

1
(d) potential difference $=$ current \times resistance accept correct rearrangement with R as subject
(e) $3.3=0.15 \times R$
$R=3.3 / 0.15(\Omega)$
$R=22(\Omega)$
allow $22(\Omega)$ without working shown for 3 marks
(f) line drawn from the origin with a decreasing gradient.

5 (a) vector
direction
must be in this order
(b) 42 km and 210 minutes
(c) draw a tangent
at 20 minutes
measure the gradient of the tangent
(d) $1.5 \mathrm{~m} / \mathrm{s}$

180 (s)
1

1
$\frac{1.5}{180}$
$0.00833\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
an answer of $0.00833\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ scores 4 marks
an answer of $0.0083333\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ scores 3 marks
an answer of $0.500\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ scores 3 marks
an answer of $0.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ scores 2 marks
(e) axes labelled and velocity intercept on y-axis
straight line with increasing gradient
an answer of:

scores 2 marks
(f) $\quad-855=950 \times \mathrm{a}$
ignore sign
$a=\frac{-855}{950}$
$a=-0.9\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
$\begin{aligned} 0^{2}-5.2^{2}=2 & \times(-0.9) \times s \\ & \left(v^{2}-u^{2}=2 a s\right)\end{aligned}$
for this mark, sign of a must be opposite to sign of u, ie allow:
$0^{2}-(-5.2)^{2}=2 . \times 0.9 \times s$
$s=\frac{-27.04}{-1.8}$
ignore signs
$\mathrm{s}=15.0(\mathrm{~m})$
an answer of 15.0 (m) scores 6 marks
allow credit for use of a correct alternative method
(b) (i) forwards / to the right / in the direction of the 300 N force answers in either order
accelerating
(ii) constant velocity to the right
(iii) resultant force is zero

1
so boat continues in the same direction at the same speed
1
(iv) parallelogram or triangle is correctly drawn with resultant

value of resultant in the range $545 \mathrm{~N}-595 \mathrm{~N}$ parallelogram drawn without resultant gains 1 mark If no triangle or parallelogram drawn:
drawn resultant line is between the two 300 N forces gains 1 mark drawn resultant line is between and longer than the two 300 N forces gains 2 marks

7 (a) mass
velocity
(b) $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(c) momentum before = momentum after
and before diving in the momentum of the diver and (small) boat is zero
after diving the diver has forwards momentum / momentum to the right
therefore the (small) boat has equal backwards momentum / equal momentum to the left
(d) the boat moves back more slowly
because there is more mass (but momentum stays the same)
(e) as she swims there is a drag force
drag force = thrust force accept resultant force $=0$
the swimmer reaches terminal velocity
1

1
[14]
8 (a) 2 protons and 2 neutrons

$$
\begin{aligned}
& \text { accept } 2 p \text { and } 2 n \\
& \text { accept (the same as a) helium nucleus } \\
& \text { symbol is insufficient } \\
& \text { do not accept } 2 \text { protons and neutrons }
\end{aligned}
$$

(b) (i) gamma rays
(ii) loses/gains (one or more) electron(s)
(c) any one from:

- wear protective clothing
- work behind lead/concrete/glass shielding
- limit time of exposure
- use remote handling
accept wear mask/gloves
wear goggles is insufficient
wear protective equipment/gear is insufficient
accept wear a film badge
accept handle with (long) tongs
accept maintain a safe distance
accept avoid direct contact

9 (a) force $=$ spring constant \times extension
accept $f=k e$
(b) extension is directly proportional to the force applied
because it is straight line through the origin
(c) test a greater range of load
or
test more springs
(d) work done is equal to elastic potential energy
as long as the spring does not go past the limit of proportionality
(e) line extending with a greater gradient than existing line
a stiffer spring has a greater spring constant (k)
1

1

1
(f) the spring will be deformed accept not gone back to original shape because it has passed the elastic limit

10 (a) weight $=$ mass \times gravitational field strength
(b) mass $=$ weight $\div g$
$=1.4 \div 9.8$
$=0.143(\mathrm{~kg})$
allow 0.143 with no working shown for 3 marks

1

1
(c) momentum $=$ mass \times velocity
momentum before $=$ momentum after
$143 \times 7.9=150 \times v$
$v=\frac{143 \times 7.9}{150}$
$=7.5(\mathrm{~m} / \mathrm{s})$
allow $7.5(\mathrm{~m} / \mathrm{s})$ with no working shown for 4 marks
incorrect number of sig. figs max. $\mathbf{3}$ marks
(d) ball is falling / moving down
at terminal velocity
air resistance and weight have the same magnitude / size
so no acceleration / constant speed

1

